Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 59(19): 7332-7349, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-31373120

RESUMO

Nonheme iron enzymes generate powerful and versatile oxidants that perform a wide range of oxidation reactions, including the functionalization of inert C-H bonds, which is a major challenge for chemists. The oxidative abilities of these enzymes have inspired bioinorganic chemists to design synthetic models to mimic their ability to perform some of the most difficult oxidation reactions and study the mechanisms of such transformations. Iron-oxygen intermediates like iron(III)-hydroperoxo and high-valent iron-oxo species have been trapped and identified in investigations of these bio-inspired catalytic systems, with the latter proposed to be the active oxidant for most of these systems. In this Review, we highlight the recent spectroscopic and mechanistic advances that have shed light on the various pathways that can be accessed by bio-inspired nonheme iron systems to form the high-valent iron-oxo intermediates.


Assuntos
Ferroproteínas não Heme/química , Oxidantes/química , Carbono/química , Catálise , Compostos Férricos/química , Hidrogênio/química , Oxirredução
2.
Angew Chem Int Ed Engl ; 58(25): 8484-8488, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-30997707

RESUMO

Non-heme iron oxygenases contain either monoiron or diiron active sites, and the role of the second iron in the latter enzymes is a topic of particular interest, especially for soluble methane monooxygenase (sMMO). Herein we report the activation of a non-heme FeIII -OOH intermediate in a synthetic monoiron system using FeIII (OTf)3 to form a high-valent oxidant capable of effecting cyclohexane and benzene hydroxylation within seconds at -40 °C. Our results show that the second iron acts as a Lewis acid to activate the iron-hydroperoxo intermediate, leading to the formation of a powerful FeV =O oxidant-a possible role for the second iron in sMMO.


Assuntos
Compostos Férricos/metabolismo , Radical Hidroxila/metabolismo , Oxigenases/metabolismo , Compostos Férricos/química , Radical Hidroxila/química , Hidroxilação , Conformação Molecular , Oxirredução , Oxigenases/química
3.
Angew Chem Int Ed Engl ; 58(17): 5718-5722, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30830996

RESUMO

Ribonucleotide reductases (RNRs) are essential enzymes required for DNA synthesis. In class Ib Mn2 RNRs superoxide (O2.- ) was postulated to react with the MnII2 core to yield a MnII MnIII -peroxide moiety. The reactivity of complex 1 ([MnII2 (O2 CCH3 )2 (BPMP)](ClO4 ), where HBPMP=2,6-bis{[(bis(2-pyridylmethyl)amino]methyl}-4-methylphenol) towards O2.- was investigated at -90 °C, generating a metastable species, 2. The electronic absorption spectrum of 2 displayed features (λmax =440, 590 nm) characteristic of a MnII MnIII -peroxide species, representing just the second example of such. Electron paramagnetic resonance and X-ray absorption spectroscopies, and mass spectrometry supported the formulation of 2 as a MnII MnIII -peroxide complex. Unlike all other previously reported Mn2 -peroxides, which were unreactive, 2 proved to be a capable oxidant in aldehyde deformylation. Our studies provide insight into the mechanism of O2 -activation in Class Ib Mn2 RNRs, and the highly reactive intermediates in their catalytic cycle.


Assuntos
Aldeídos/metabolismo , Manganês/química , Peróxidos/metabolismo , Humanos
4.
J Am Chem Soc ; 140(17): 5798-5804, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29618199

RESUMO

[Fe(ß-BPMCN)(CH3CN)2]2+ (1, BPMCN = N,N' -bis(pyridyl-2-methyl)- N,N' -dimethyl- trans-1,2-diaminocyclo-hexane) is a relatively poor catalyst for cyclohexane oxidation by H2O2 and cannot perform benzene hydroxylation. However, addition of Sc3+ activates the 1/H2O2 reaction mixture to be able to hydroxylate cyclohexane and benzene within seconds at -40 °C. A metastable S = 1/2 FeIII-(η1-OOH) intermediate 2 is trapped at -40 °C, which undergoes rapid decay upon addition of Sc3+ at rates independent of [substrate] but linearly dependent on [Sc3+]. HClO4 elicits comparable reactivity as Sc3+ at the same concentration. We thus postulate that these additives both facilitate O-O bond heterolysis of 2 to form a common highly electrophilic FeV═O oxidant that is comparably reactive to the fastest nonheme high-valent iron-oxo oxidants found to date.

5.
J Biol Inorg Chem ; 22(2-3): 339-365, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28074299

RESUMO

The 2-His-1-carboxylate facial triad is a widely used scaffold to bind the iron center in mononuclear nonheme iron enzymes for activating dioxygen in a variety of oxidative transformations of metabolic significance. Since the 1990s, over a hundred different iron enzymes have been identified to use this platform. This structural motif consists of two histidines and the side chain carboxylate of an aspartate or a glutamate arranged in a facial array that binds iron(II) at the active site. This triad occupies one face of an iron-centered octahedron and makes the opposite face available for the coordination of O2 and, in many cases, substrate, allowing the tailoring of the iron-dioxygen chemistry to carry out a plethora of diverse reactions. Activated dioxygen-derived species involved in the enzyme mechanisms include iron(III)-superoxo, iron(III)-peroxo, and high-valent iron(IV)-oxo intermediates. In this article, we highlight the major crystallographic, spectroscopic, and mechanistic advances of the past 20 years that have significantly enhanced our understanding of the mechanisms of O2 activation and the key roles played by iron-based oxidants.


Assuntos
Ácidos Carboxílicos/metabolismo , Enzimas/metabolismo , Ferro/metabolismo , Oxidantes/metabolismo , Oxigênio/metabolismo , Ativação Enzimática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...